Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 13(9)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925547

RESUMO

Diffuse grade II IDH-mutant gliomas are slow-growing brain tumors that progress into high-grade gliomas. They present intratumoral cell heterogeneity, and no reliable markers are available to distinguish the different cell subtypes. The molecular mechanisms underlying the formation of this cell diversity is also ill-defined. Here, we report that SOX9 and OLIG1 transcription factors, which specifically label astrocytes and oligodendrocytes in the normal brain, revealed the presence of two largely nonoverlapping tumoral populations in IDH1-mutant oligodendrogliomas and astrocytomas. Astrocyte-like SOX9+ cells additionally stained for APOE, CRYAB, ID4, KCNN3, while oligodendrocyte-like OLIG1+ cells stained for ASCL1, EGFR, IDH1, PDGFRA, PTPRZ1, SOX4, and SOX8. GPR17, an oligodendrocytic marker, was expressed by both cells. These two subpopulations appear to have distinct BMP, NOTCH1, and MAPK active pathways as stainings for BMP4, HEY1, HEY2, p-SMAD1/5 and p-ERK were higher in SOX9+ cells. We used primary cultures and a new cell line to explore the influence of NOTCH1 activation and BMP treatment on the IDH1-mutant glioma cell phenotype. This revealed that NOTCH1 globally reduced oligodendrocytic markers and IDH1 expression while upregulating APOE, CRYAB, HEY1/2, and an electrophysiologically-active Ca2+-activated apamin-sensitive K+ channel (KCNN3/SK3). This was accompanied by a reduction in proliferation. Similar effects of NOTCH1 activation were observed in nontumoral human oligodendrocytic cells, which additionally induced strong SOX9 expression. BMP treatment reduced OLIG1/2 expression and strongly upregulated CRYAB and NOGGIN, a negative regulator of BMP. The presence of astrocyte-like SOX9+ and oligodendrocyte-like OLIG1+ cells in grade II IDH1-mutant gliomas raises new questions about their role in the pathology.

2.
NAR Cancer ; 2(3): zcaa020, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34316689

RESUMO

Intrinsic resistance to current therapies, leading to dismal clinical outcomes, is a hallmark of glioblastoma multiforme (GBM), the most common and aggressive brain tumor. Understanding the underlying mechanisms of such malignancy is, therefore, an urgent medical need. Deregulation of the protein translation machinery has been shown to contribute to cancer initiation and progression, in part by driving selective translational control of specific mRNA transcripts involved in distinct cancer cell behaviors. Here, we focus on eIF3, a multimeric complex with a known role in the initiation of translation and that is frequently deregulated in cancer. Our results show that the deregulated expression of eIF3e, the e subunit of eIF3, in specific GBM regions could impinge on selective protein synthesis impacting the GBM outcome. In particular, eIF3e restricts the expression of proteins involved in the response to cellular stress and increases the expression of key functional regulators of cell stemness. Such a translation program can therefore serve as a double-edged sword promoting GBM tumor growth and resistance to radiation.

3.
ACS Omega ; 2(12): 8730-8740, 2017 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-30023590

RESUMO

Breast cancer is the most devastating disease among females globally. Conventional chemotherapeutic regimen relies on the use of highly cytotoxic drugs as monotherapy and combination therapy leading to severe side effects to the patients as collateral damage. Moreover, combining hydrophobic and hydrophilic drugs create erratic biodistribution and suboptimal medicinal outcome. Hence, packaging multiple drugs of diverse mechanisms of action and biodistribution for safe delivery into tumor tissues with optimal dosages is indispensable for next-generation breast cancer therapy. To address these, in this report, we describe a unique cisplatin-triggered self-assembly of linear polymer into 3D-spherical sub 200 nm particles. These nanoparticles comprise a hydrophobic (paclitaxel) and hydrophilic drug (cisplatin) simultaneously in a single particle. Molecular dynamics simulation revealed hydrophilic-hydrophilic interaction and interchain H-bonding as underlying mechanisms of self-assembly. Confocal microscopy studies evidently demonstrated that these novel nanoparticles can home into lysosomes in breast cancer cells, fragment subcellular nuclei, and prevent cell division, leading to improved breast cancer cell death compared to free drug combination. Moreover, 3D-breast tumor spheroids were reduced remarkably by the treatment of these nanoparticles within 24 h. These dual-drug-loaded self-assembled polymeric nanoparticles have prospective to be translated into a clinical strategy for breast cancer patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...